

Multilevel Models

Session 2: Random intercept models

Outline

- Two level random intercept models
 - Comparing groups the variance components model
 - Quantifying group differences the variance partition coefficient
 - Adding predictors at the individual and group level the random intercept model

Two level random intercept models for continuous data

- Simplest form of multilevel models in wide use
- Extends standard linear regression models by partitioning the residual error between individual and group components
- But assumes same relationship between x and y across groups
- Can provide an initial assessment of importance of groups (when no explanatory variables are included)

Single-level model for mean height

- y_i = the height for the ith individual
- β_0 is mean height in population and e_i is residual for ith individual (i=1,2...,n)
- Assume e_i are approximately normal with mean 0. The variance summarises distribution around the mean.

Single-level model for mean height

- But suppose we know our observations come from different groups (e.g. families), j=1,..., J
 shown here are two groups (in practice, there will be many more)
- We can capitalise on this additional information and improve our model

Multi-level 'empty' model for mean height: variance components model

- y_{ii} height for the i^{th} individual in j^{th} group (1,2,...n).
- β_0 average height across all groups
- u_i group mean deviations from overall mean height
- e_{ij} individual deviations from group means
- $\beta_0 + u_j$ average height in group j

Variance Partition Coefficient

$$VPC = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}$$

- VPC tells us how important group level differences are (e.g. what proportion of variance is at the group level?)
- VPC = 0 if no group effect

$$\sigma_u^2 = 0$$

• VPC =1 if no within group differences $\sigma_e^2 = 0$

Example: Fear of Crime across neighbourhoods

VARIANCE COMPONENTS MODEL

Fear of crime: higher scores mean		MODEL 1
more fear	FIXED PART	
• 27,764 individuals, nested in	Intercept	0.027 (.009)
 3,390 areas Mean of 8 residents per area (1- 47) 	RANDOM PART	
	$\sigma_{\!\scriptscriptstyle e}^2$ Individual variance	0.863 (.008)
	$\sigma_{\scriptscriptstyle \! u}^2$ Neighbourhood variance	0.145 (.007)

Crime Survey for England and Wales, 2013/14

$$VPC = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}$$

Neighbourhood contribution = .145/(.863+.145) = 14.4%

Adding an explanatory variable: A random intercept model

- Overall relationship between weight and height across families is represented by intercept β_0 and slope β_1 (fixed part)
- For group j, the intercept is $\beta_0 + u_i$ (either above or below average)
- Individual deviations from group line e_{ij} and group deviations from average line u_j (random part, with means 0 and variances σ_e^2 and σ_u^2)

Group level explanatory variables

- Multilevel models enable us to explore group level variables simultaneously with individual
- Can be from external sources (administrative data etc), or aggregates of individual data (depending on group size)
- No need to directly identify them as group effects, this is accounted for by the group residual
- Standard errors generally underestimated if included in individual level analysis

Example: Fear of Crime across neighbourhoods

RANDOM INTERCEPT MODEL	Crime Survey for England and Wales, 2013/14	
	MODEL 1	MODEL 2
FIXED PART		
Intercept	0.027 (.009)	005 (.009)
X_{1ii} Age (in years)		004 (.001)
x_{2ij}^{2ij} Victim in last 12 months		.248 (.014)
X_{3j} Crime Rate		.227 (.012)
RANDOM PART		
$\sigma_{_e}^2$ Individual variance	0.863 (.008)	.850 (.008)
σ_u^2 Neighbourhood variance	0.145 (.007)	.105 (.006)

- Individual level R²: (.863 .850)/.863 = .015
- Neighbourhood level R² = (.145-.105)/.145 = .276

Summary

- In this session we have introduced the variance components model and the random intercept model
- The variance components model can be used to provide an initial estimate of the contribution of groups
- The **random intercept** model allows us to include explanatory variables at the individual and group level to explain variation in our dependent variable

For more information visit www.ncrm.ac.uk

